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Summary

We want to solve the dense symmetric eigenvalue problem
most/all of the eigenvalues and (possibly) eigenvectors

We’re targeting large distributed-memory parallel machines
seeking scalable, communication-efficient algorithms

Overall approach is two-phase tridiagonalization

We propose two algorithmic improvements
Householder vector reconstruction
Communication-avoiding successive band reduction
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Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction
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Tridiagonalization

We can solve the dense symmetric eigenvalue problem with 3 steps:

1

3
2

1 Reduction-to-tridiagonal via orthogonal similarity transformations
2 Solve the symmetric tridiagonal eigenvalue problem
3 Back-transformation of eigenvectors (if desired)
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Two-Phase Tridiagonalization (SBR)

Tridiagonalization can be done over two (or more) phases in procedure
known as Successive Band Reduction (SBR) [BLS00]:

1a 1b

1a Full-to-band via orthogonal similarity transformations
1b Band-to-tridiagonal using bulge-chasing transformations
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Two-Phase Tridiagonalization (SBR)

Tridiagonalization can be done over two (or more) phases in procedure
known as Successive Band Reduction (SBR) [BLS00]:

1a

3b

1b

3a

1a Full-to-band via orthogonal similarity transformations
1b Band-to-tridiagonal using bulge-chasing transformations

Two-phase back-transformation required for eigenvectors
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Two-Phase Performance Benefits

Two-phase tridiagonalization avoids communication bottlenecks of
direct approach

Sequential performance example

Direct approach suffers poor
cache performance

Two-phase approach already
available in MKL
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Model of Distributed-Memory Parallel Computation

Memory

Cache

Memory

Cache

Memory

Cache

Memory

Cache

To analyze algorithms, we are interested in the following quantities
flops floating point operations

memory bandwidth cost words moved between memory and cache

interprocessor bandwidth cost words communicated between processors

latency cost messages communicated between processors
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Related Work

Two-phase tridiagonalization is proven to be effective in practice,
achieving better performance than direct tridiagonalization

despite requiring more flops for eigenvectors

Sequential
Successive Band Reduction [BLS00], Intel MKL

Multicore
PLASMA [LLD11], CA-SBR [BDK12]

GPU
MAGMA [HSG+13], Eigen-G [IYM14]

Distributed-memory parallel
ELPA [MBJ+14], Eigen-Exa [IYM11]

Grey Ballard 7



Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction

3 Band-to-Tridiagonal Reduction

4 Open Problem



(One-Phase) Householder Tridiagonalization

For i = 1 to n − 2
1 compute Householder vector yi to annihilate column i
2 apply two-sided symmetric update

Ã = (I − τiyiyT
i ) · A · (I − τiyiyT

i )

cast as symmetric rank-2 update

Ã = A− yivT
i − viyT

i

End
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Blocked Direct Tridiagonalization Algorithm

Direct tridiagonalization performed with blocked algorithm:
panel factorization + (two-sided symmetric) trailing matrix update

↑
update

↑
access

↑
access

↑
update

↑
update

↑
access

Panel factorization requires BLAS 2 (matrix-vector) operations
total of O(n3) operations

Trailing matrix update uses BLAS 3 (matrix-matrix) operations
total of O(n3) operations
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Blocked Full-to-Band Algorithm

Full-to-band also performed with blocked algorithm:
panel factorization + (two-sided symmetric) trailing matrix update

↑
update

↑
no access

↑
access

↑
update

↑
update

Panel factorization is tall-skinny QR factorization
total of O(n2b) operations

Trailing matrix update uses BLAS 3 (matrix-matrix) operations
total of O(n3) operations
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Blocked Full-to-Band Algorithm

For i = 1 to n
b − 2

1 QR factorization to generate Yi and annihilate block column i
2 apply two-sided symmetric update

Ã = (I − YiTiY T
i ) · A · (I − YiT T

i Y T
i )

cast as symmetric rank-2b update

Ã = A− YiV T
i − ViY T

i

End
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Direct Tridiagonalization vs Full-to-Band

Full-to-band communicates less than direct tridiagonalization,
reducing interprocessor latency and local memory bandwidth costs

However,
tall-skinny QR can still be a latency bottleneck

Householder QR requires a synchronization for every column

(and we still have to reduce the band matrix to tridiagonal form)
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Tall-Skinny QR (TSQR) Algorithm [DGHL12]

Grey Ballard 12

Key benefit of TSQR:
one parallel reduction

Householder QR:
one reduction per column

Orthogonal factor stored implicitly
as tree of Householder vectors



Communication-Avoiding QR (CAQR)

CAQR is designed for general matrices, using TSQR for panel
factorization and applying the one-sided update using implicit structure

Performing a symmetric two-sided update is much more complicated
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TSQR within Full-to-Band

TSQR is best algorithm for panel factorization, but
Two-sided symmetric trailing matrix update is easier with
Householder vectors

Can we get the best of both worlds:
can we perform TSQR but then recover Householder vectors?

Grey Ballard 14



Key Idea

Compute a QR decomposition
using Householder vectors*:

A = QR = (I − YTY T
1 )R

A Q R I Y T Y R
T

1

Re-arrange the equation and we
have an LU decomposition:

A− R = Y · (−TY T
1 R)

A R Y T Y R
T

1

Grey Ballard 15

*I − YTY T
1 known as compact WY representation
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Yamamoto’s Idea for QR Decomposition

Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the one-sided trailing matrix update to a GPU

To make CAQR’s trailing matrix update more like matrix multiplication,
his idea was to convert implicit tree into compact WY-like representation

W S
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Yamamoto’s Idea for QR Decomposition

Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the one-sided trailing matrix update to a GPU

To make CAQR’s trailing matrix update more like matrix multiplication,
his idea was to convert implicit tree into compact WY-like representation

W S

Compact WY representation: I − YTY T

I Y T Y
T

Basis-kernel representation: I −WSW T

I W S W
T
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Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W S W

T
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Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W W

T

U L
-1-1
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How is Q formed?

Q1 Identity

Grey Ballard 18

Apply Q to the identity,
exploiting sparsity

Computation and communication
identical to TSQR, performed in
reverse order



Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W W

T

U L
-1-1
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Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:
1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Perform LU decomposition: Q − I = LU
4 Set Y = L
5 Set T = −UY−T

1

I − YTY T = I −
[
Y1
Y2

] [
T
] [

Y T
1 Y T

2

]
I Y T Y

T
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Why form Q?

Cheaper approach based on A− R = Y · (−TY T
1 R):

1 Perform TSQR
2 Perform LU decomposition: A− R = LU
3 Set Y = L
4 Set T = −UR−1Y−T

1 (or compute T from Y )

This approach is similar to computing R using TSQR
and Q using Householder QR

if A is well-conditioned, works fine
if A is ill-conditioned, R matrix is sensitive to roundoff
more on less-stable approaches later...
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Why form Q?

Cheaper approach based on A− R = Y · (−TY T
1 R):

1 Perform TSQR
2 Perform LU decomposition: A− R = LU
3 Set Y = L
4 Set T = −UR−1Y−T

1 (or compute T from Y )

This approach is similar to computing R using TSQR
and Q using Householder QR

if A is well-conditioned, works fine
if A is ill-conditioned, R matrix is sensitive to roundoff
more on less-stable approaches later...

Grey Ballard 21



What about pivoting in LU?

Third step in reconstructing Householder vectors:
Perform LU decomposition: Q − I = LU

what if Q − I is singular?

Actually, we need to make a sign choice:
Perform LU decomposition: Q − Sgn = LU

Sgn matrix corresponds to sign choice in Householder QR
guarantees Q − Sgn is nonsingular
guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy
LU of top block followed by triangular solve for all other rows

Grey Ballard 22
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Reconstructing Householder Vectors (TSQR-HR)

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Perform LU decomposition: Q − Sgn = LU
4 Set Y = L
5 Set T = −U · Sgn · Y−T

1

I − YTY T = I −
[
Y1
Y2

] [
T
] [

Y T
1 Y T

2

]
I Y T Y

T
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Numerical Stability

Theorem
Let R̂ be the computed upper triangular factor of m × b matrix A
obtained via the TSQR algorithm with p processors using a binary tree
(assuming m/p ≥ b), and let Q̃ = I − Ỹ T̃ Ỹ T

1 and R̃ = Sgn · R̂ where
Ỹ , T̃ , and Sgn are the computed factors obtained from Householder
reconstruction. Then

‖A− Q̃R̃‖F ≤ F1(m,b,p, ε)‖A‖F

and
‖I − Q̃T Q̃‖F ≤ F2(m,b,p, ε)

where F1,F2 = O
((

b3/2(m/p) + b5/2 log p + b3) ε) for b(m/p)ε� 1.

*Result based on the stability of TSQR [MYZ12]
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Numerical Experiments for Tall-Skinny Matrices

ρ κ(A) ‖A− Q̃R̃‖F ‖I − Q̃T Q̃‖F
1e-01 5.1e02 2.2e-15 6.8e-15
1e-03 5.2e04 2.3e-15 9.3e-15
1e-05 5.2e06 2.4e-15 9.5e-15
1e-07 5.1e08 2.3e-15 9.1e-15
1e-09 5.2e10 2.3e-15 9.3e-15
1e-11 5.2e12 2.2e-15 8.8e-15
1e-13 5.0e14 2.7e-15 1.2e-14
1e-15 4.7e15 2.3e-15 8.7e-15

Error of TSQR-HR on tall and skinny matrices (m = 1000,b = 200)
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Costs of Householder Reconstruction

Householder Reconstruction
1 Perform TSQR 2mb2 flops, one QR reduction
2 Form Q 2mb2 flops, one QR reduction
3 LU(Q − Sgn) mb2 flops, one broadcast
4 Set Y = L
5 Set T = −U · Sgn · Y−T

1 O(b3) flops

Alternative Stable Algorithms
TSQR 2mb2 flops, one QR reduction
HhQR (and form T ) 3mb2 flops, 2b reductions
Yamamoto’s 4mb2 flops, two QR reductions

Grey Ballard 26
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Performance of Stable Tall-Skinny QR Algorithms
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Some Cheaper and Less-Stable Alternatives

Alternative Less-Stable Algorithms

TSQR-AR
Use TSQR to get R
Perform LU(A− R) to get Y

CholQR-HR
R = Chol(AT A)
Perform LU(A− R) to get Y

...or run these with a step of iterative refinement

Grey Ballard 28



Numerical Stability of Less-Stable Alternatives

TSQR-AR
with it. refinement

CholQR-HR
with it. refinement

ρ κ ‖A− Q̃R̃‖F ‖I − Q̃T Q̃‖F ‖A− Q̃R̃‖F ‖I − Q̃T Q̃‖F

1e-01 5.1e02 1.1e-15 2.6e-15 1.1e-15 2.6e-15
1e-03 5.2e04 1.0e-15 2.7e-15 1.0e-15 2.8e-15
1e-05 5.2e06 1.1e-15 2.6e-15 1.1e-15 3.0e-15
1e-07 5.1e08 1.1e-15 2.8e-15 1.0e-15 2.6e-15
1e-09 5.2e10 1.1e-15 2.8e-15 1.0e-15 2.8e-15
1e-11 5.2e12 1.1e-15 2.7e-15 1.0e-15 2.8e-15
1e-13 5.0e14 1.1e-15 2.7e-15 +∞ +∞
1e-15 4.7e15 1.1e-15 4.6e-15 +∞ +∞

Errors on tall and skinny matrices (m = 1000,b = 200)
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Performance of Less-Stable Tall-Skinny QR Algorithms
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Leading Order Costs for Full-to-Band

Panel Factorization Flops Words Messages

Householder QR O
(

n2
√

p

)
O (n log p)

TSQR 4
3

n3

p O
(

n2
√

p log p
)

O
(√

p log3 p
)

TSQR-HR O
(

n2
√

p

)
O
(√

p log2 p
)

Costs of full-to-band reduction of n × n matrix
to band matrix with bandwidth b � n

distributed over p processors in 2D fashion.
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Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction

3 Band-to-Tridiagonal Reduction

4 Open Problem



Band-to-Tridiagonal Reduction

Maintaining band structure during orthogonal similarity
transformations is trickier

Annihilating entries within band causes fill-in outside the band
Bulge-chasing process is required to maintain band structure

Ideas go back a long way:
Rutishauser [Rut63]
Schwarz [Sch63]
Murata and Horikoshi [MH75]
Kaufman [Kau84]
Bischof, Lang, and Sun [BLS00]
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Band-to-Tridiagonal Bulge Chasing
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constraint:
c + d ≤ b

b = bandwidth
c = columns
d = diagonals



1-Sweep Band-to-Tridiagonal [MH75]

1 

2 

3 

4 

5 
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Murata/Horikoshi’s algorithm:
all diagonals annihilated

after one sweep

c = 1 column
d = b − 1 diagonals



How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory
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Communication-Avoiding SBR

We propose an algorithm that balances the two techniques for getting
data re-use (CA-SBR)

Theoretically optimal approach: cut bandwidth in half at every sweep
log b sweeps

Sequential and shared-memory implementation exist [BDK12]
number of sweeps is tuning parameter
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Performance Results in Shared Memory

Speedup of sequential CASBR over Intel’s Math Kernel Library
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Performance Results in Shared Memory

Speedup of parallel CASBR (10 threads) over sequential CASBR
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Distributed-Memory Parallel Distribution

P0 

P1 

P2 

P0 

P1 

Grey Ballard 38

We use 1D
block or block-cyclic distribution

of columns to processors



Lang’s Algorithm [Lan93, Auc12]

P0 

P1 

P2 

P3 
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parallelization of Murata/Horikoshi’s:
eliminate one column at a time,

tridiagonal after one sweep

works like a bandsaw:
columns move left
Householder vectors move right
O(1) messages per column



Communication-Avoiding SBR [BDK15]

P0 

P1 

P2 

P3 

P4 
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cut bandwidth in half each sweep;
requires multiple sweeps

works like a sandbag relay:
each processor passes bulges along
O(p) messages per sweep



Leading Order Costs for Band-to-Tridiagonal

Algorithm Flops Words Messages

Lang’s [Lan93, Auc12]
O
(

n2b
p

)
O(nb)

O(n)

CA-SBR [BDK15] O(p log b)

Costs of band-to-tridiagonal reduction of
band matrix with bandwidth b � n

distributed over p processors in 1D fashion.
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Back-Transformation for Eigenvectors

If only eigenvalues are desired, CA-SBR gives a theoretical net win,
but . . .

. . . what if we want eigenvectors?

we must accumulate all the orthogonal transformations from the
band-to-tridiagonal reduction
we generate O(n2) data per sweep
naively, we need O(n3) computation per sweep

In order to achieve O(p log b)� O(n) messages,
we need to take O(log b) sweeps instead of 1 sweep

tradeoff between latency cost and flops/bandwidth cost
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1 Two-Phase Tridiagonalization: Successive Band Reduction
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Open Problem

In two-phase tridiagonalization, we compute the following matrices:

A = Q1BQ1
T = Q1(Q2TQT

2 )QT
1 = Q1Q2(V ΛV T )Q2

T QT
1

where A is dense, B is banded, T is tridiagonal, Λ is diagonal

We can compute A, B, T , Λ, V stably and efficiently, we seek Q1Q2V

Can we compute
Q1Q2 from A and T ; or
Q2 from B and T

stably (as stable as direct tridiagonalization) and
efficiently (� O(n) messages)?
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Open Problem

Problem: Given A and (similar) T , compute Q such that A = QTQT

In the first part of the talk, we established a connection between
A = QR and A = LU

Is there an analogous connection between
A = QTQT and A = LT̃LT (or A = LDLT )?

T̃ is tridiagonal from Aasen’s factorization

D is block-diagonal from Bunch-Kaufman’s factorization
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Summary

We want to solve the dense symmetric eigenvalue problem
most/all of the eigenvalues and (possibly) eigenvectors

We’re targeting large distributed-memory parallel machines
seeking scalable, communication-efficient algorithms

Overall approach is two-phase tridiagonalization

We propose two algorithmic improvements
Householder vector reconstruction
Communication-avoiding successive band reduction
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Thanks!

For more details:

Reconstructing Householder Vectors from Tall-Skinny QR
Grey Ballard, Jim Demmel, Laura Grigori, Mathias Jacquelin,

Nick Knight, Hong Diep Nguyen and Edgar Solomonik
Journal on Parallel and Distributed Computing 2015

http://dx.doi.org/10.1016/j.jpdc.2015.06.003

Avoiding Communication in Successive Band Reduction
Grey Ballard, Jim Demmel, and Nick Knight

ACM Transactions on Parallel Computing 2015
http://doi.acm.org/10.1145/2686877
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Experimental Platforms

Hopper
Compute nodes:
2 12-core AMD MagnyCours
Peak flop rate:

8.4 Gflops/core
Memory bandwidth:

53.9 GB/s
Interconnect:

Gemini 3D-torus

Edison
Compute nodes:

2 12-core Intel Ivy Bridge
Peak flop rate:

19.2 Gflops/core
Memory bandwidth:

103.3 GB/s
Interconnect:

Aries dragonfly
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